高等数学(理工类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
第 六 章
第 七 章
第 八 章
第 九 章
第 十 章
第十一章
第十二章
邻域定义
函数的概念
函数的相等
函数值
函数的图形
有界性
单调函数
奇偶性
周期性
函数关系的建立
回归分析
反函数的概念
复合函数
初等函数
数列的极限
数列极限的严格定义
数列的有界性
极限唯一性
收敛数列与其子数列间的关系
自变量趋向无穷大时函数的极限
自变量趋向有限值时函数的极限
左右极限
极限的保号性定理
无穷小
无穷小与函数极限的关系
函数极限与无穷小的关系
无穷小的运算性质
无穷大
无穷小与无穷大的关系
极限运算法则
复合函数的极限运算法则
夹逼准则
单调有界准则
重要极限一
重要极限二
无穷小的比较
常用等价无穷小
等价无穷小替换定理
等价无穷小的充要条件
函数的连续性
左右连续
连续函数与连续区间
函数的间断点
复合函数连续性
初等函数的连续性
幂指函数
最大值和最小值定理
介值定理
零点定理
一致连续的概念
 
大学普通本科 -> 理工类 -> 高等数学 -> 第一章 函数、极限与连续 -> 1.4 函数的极限 -> 内容要点 -> 自变量趋向有限值时函数的极限
自变量趋向有限值时函数的极限

问题:如何用数学语言描述下述过程:
        在的过程中,函数无限趋近于确定值.
要点:(1)过程体现的接近程度.
      (2)函数无限接近:,有.
定义  设函数在点的某一去心邻域内有定义. 若对任意给定的正数(不论它多么小),总存在正数,使当时,函数都满足不等式
                  
则常数就称为函数时的极限. 记作
             (当).
定义    使当时,恒有.
注意:1.函数极限与在点处是否有定义无关;
      2.与任意给定的正数有关.
定义的几何解释:

的去心邻域时,函数图形完全落在以直线为中心线,宽为的带形区域内. 显然,找到一个后,越小越好.

发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号