高等数学(理工类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
第 六 章
第 七 章
第 八 章
第 九 章
第 十 章
第十一章
第十二章
邻域
聚点和孤立点
多元函数的概念
二元函数的极限
二元函数的连续性
二元初等函数
闭区域上连续函数的性质
偏导数定义
高阶偏导数
偏导数的几何意义
混合偏导数相等的条件
全微分的定义
可微的必要条件
可微的充分条件
二元函数的线性化近似问题
多元函数连续、可导、可微的关系
全微分在近似计算中的作用
绝对误差与相对误差
中间变量为一元函数复合函数求导
中间变量为多元函数复合函数求导
中间变量为多元函数和一元函数复合函数求导
全微分形式不变性
一个方程二元函数情形的隐函数求导
一个方程三元函数情形的隐函数求导
方程组情形的隐函数求导
空间曲线的切线与法平面
空间曲线的切线与法平面(续)
空间曲面的切平面与法线
曲面的法向量的方向余弦
方向导数的概念
梯度的概念
梯度的运算性质
二元函数的极值
极值的必要条件
极值的充分条件
二元函数极值的一般步骤
求最值的一般步骤
条件极值的概念
拉格朗日乘数法
二元函数的泰勒公式
 
大学普通本科 -> 理工类 -> 高等数学 -> 第九章 多元函数微分学 -> 9.8 多元函数的极值 -> 内容要点 -> 条件极值的概念
条件极值的概念

    前面所讨论的极值问题,对于函数的自变量一般只要求落在定义域内,并无其它限制条件,这类极值我们称为无条件极值. 但在实际问题中,常会遇到对函数的自变量还有附加条件的极值问题.

    例如,求表面积为而体积为最大的长方体的体积问题. 设长方体的长、宽、高分别为,则体积. 因为长方体的表面积是定值,所以自变量还需满足附加条件

.

像这样对自变量有附加条件的极值称为条件极值.

    有些情况下,可将条件极值问题转化为无条件极值问题,如在上述问题中,可以从

解出变量关于变量的表达式,并代入体积的表达式中. 然而,一般地这样做很不方便. 下面我们要介绍求解一般条件极值问题的拉格朗日乘数法.

发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号