高等数学(理工类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
第 六 章
第 七 章
第 八 章
第 九 章
第 十 章
第十一章
第十二章
邻域
聚点和孤立点
多元函数的概念
二元函数的极限
二元函数的连续性
二元初等函数
闭区域上连续函数的性质
偏导数定义
高阶偏导数
偏导数的几何意义
混合偏导数相等的条件
全微分的定义
可微的必要条件
可微的充分条件
二元函数的线性化近似问题
多元函数连续、可导、可微的关系
全微分在近似计算中的作用
绝对误差与相对误差
中间变量为一元函数复合函数求导
中间变量为多元函数复合函数求导
中间变量为多元函数和一元函数复合函数求导
全微分形式不变性
一个方程二元函数情形的隐函数求导
一个方程三元函数情形的隐函数求导
方程组情形的隐函数求导
空间曲线的切线与法平面
空间曲线的切线与法平面(续)
空间曲面的切平面与法线
曲面的法向量的方向余弦
方向导数的概念
梯度的概念
梯度的运算性质
二元函数的极值
极值的必要条件
极值的充分条件
二元函数极值的一般步骤
求最值的一般步骤
条件极值的概念
拉格朗日乘数法
二元函数的泰勒公式
 
大学普通本科 -> 理工类 -> 高等数学 -> 第九章 多元函数微分学 -> 9.8 多元函数的极值 -> 内容要点 -> 二元函数极值的概念
二元函数极值的概念

定义1  设函数在点的某一邻域内有定义,对于该邻域内异于的任意一点,如果,则称函数在有极大值;如果,则称函数在有极小值;极大值、极小值统称为极值. 使函数取得极值的点称为极值点.

例1   函数在点处有极小值. 从几何上看,表示一开口向上的椭圆形抛物面,点是它的顶点,(如图).

例2   函数在点处有极大值. 从几何上看,表示一开口向下的半圆锥面,点是它的顶点,(如图).

例3   函数在点处无极值. 从几何上看,它表示双曲抛物面(马鞍面),(如图).

    二元函数在几何上表示一张曲面,故二元函数的最大值与最小值就是曲面上的最高点与最低点.

注:与导数在一元函数极值研究中的作用一样,偏导数也是研究多元函数极值的主要手段.

发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号