高等数学(理工类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
第 六 章
第 七 章
第 八 章
第 九 章
第 十 章
第十一章
第十二章
邻域
聚点和孤立点
多元函数的概念
二元函数的极限
二元函数的连续性
二元初等函数
闭区域上连续函数的性质
偏导数定义
高阶偏导数
偏导数的几何意义
混合偏导数相等的条件
全微分的定义
可微的必要条件
可微的充分条件
二元函数的线性化近似问题
多元函数连续、可导、可微的关系
全微分在近似计算中的作用
绝对误差与相对误差
中间变量为一元函数复合函数求导
中间变量为多元函数复合函数求导
中间变量为多元函数和一元函数复合函数求导
全微分形式不变性
一个方程二元函数情形的隐函数求导
一个方程三元函数情形的隐函数求导
方程组情形的隐函数求导
空间曲线的切线与法平面
空间曲线的切线与法平面(续)
空间曲面的切平面与法线
曲面的法向量的方向余弦
方向导数的概念
梯度的概念
梯度的运算性质
二元函数的极值
极值的必要条件
极值的充分条件
二元函数极值的一般步骤
求最值的一般步骤
条件极值的概念
拉格朗日乘数法
二元函数的泰勒公式
 
大学普通本科 -> 理工类 -> 高等数学 -> 第九章 多元函数微分学 -> 9.7 方向导数与梯度 -> 内容要点 -> 数量场与向量场的概念
数量场与向量场的概念

    数学中所研究的场,考察的是客观存在的场的量的侧面.如果对于空间区域内任一点,都有一个确定的数量,则称在这空间区域内确定一个数量场.常见的数量场如温度场、密度场等.一个数量场可用一个数量函数来确定.
    如果与点相对应的是一个向量,则称在这空间区域内确定一个向量场.

    常见的向量场如力场、速度场等.

    一个向量可用一个向量值函数来确定,而,其中是点的数量函数.

    如果场不随时间而变化,则称这类场为稳定场,否则,则称为不稳定场,本书中我们只讨论稳定场.

发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号