高等数学(理工类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
第 六 章
第 七 章
第 八 章
第 九 章
第 十 章
第十一章
第十二章
常数项级数的概念
Koch雪花
收敛级数的基本性质
柯西审敛准则
正项级数
比较判别法
比较判别法的极限的形式
比值判别法
根值判别法
积分判别法
交错级数
绝对收敛与条件收敛
绝对收敛级数的基本性质
绝对收敛级数的柯西定理
函数项级数的一般概念
幂级数的概念
幂级数的收敛域
收敛半径的求法
求收敛域的基本步骤
幂级数的代数运算
幂级数的分析运算性质
函数泰勒展开成幂级数的充要条件
麦克劳林级数
函数展开成幂级数——直接法
常用麦克劳林展开式
函数展开成幂级数——间接法
函数值的近似计算
计算定积分
求常数项级数的和
欧拉公式
一致收敛的概念
魏尔斯特拉斯判别法
函数项级数一致收敛的基本性质
三角函数系的正交性
傅里叶级数概念
狄利克雷收敛定理
非周期函数的周期延拓
正弦级数与余弦级数
函数的奇延拓与偶延拓
一般周期函数的傅里叶级数
傅里叶级数的复数形式
 
大学普通本科 -> 理工类 -> 高等数学 -> 第十二章 无穷级数 -> 12.5 函数展开成幂级数 -> 内容要点 -> 函数展开成幂级数——间接法
函数展开成幂级数——间接法

    一般说来,只有少数简单的函数,其幂级数展开式能利用直接法得到它的麦克劳林展开式. 更多的函数是根据唯一性定理,利已知函数的展开式(尤其是上面总结的七个基本函数的麦克劳林展开式),通过线性运算法则、变量代换、恒等变形、逐项求导或逐项积分等方法间接地求得幂级数的展开式. 这种方法我们称为函数展开成幂级数的间接法. 实质上函数的幂级数展开是求幂级数和函数的逆过程.
     掌握了函数展开成麦克劳林级数的方法后,当要把函数展开成的幂级数时,只需把转化成的表达式,把看成变量,展开成的幂级数,即得的幂级数. 对于较复杂的函数,可作变量替换,于是
                          .

发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号