概率论与数理统计(理工类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
第 六 章
第 七 章
第 八 章
离散型随机变量的数学期望
连续型随机变量的数学期望
随机变量函数的数学期望
二维随机变量函数的数学期望
数学期望的性质
方差的定义
随机变量方差的计算
0-1分布的数字特征
二项分布的数字特征
几何分布的数字特征
泊松分布的数字特征
指数分布的数字特征
均匀分布的数字特征
正态分布的数字特征
方差的性质
连续型条件数学期望和方差
协方差的计算
协方差的性质
相关系数的定义
随机变量和的方差与协方差的关系
正态分布的相关与独立
矩的概念
n维正态分布的重要性质—性质1
n维正态分布的重要性质—性质2
n维正态分布的重要性质—性质3
n维正态分布的重要性质—性质4
切比雪夫不等式
伯努利大数定理
依概率收敛的定义
切比雪夫大数定理
林德伯格—勒维中心极限定理
棣莫佛—拉普拉斯中心极限定理
 
大学普通本科 -> 理工类 -> 概率论与数理统计 -> 第四章 随机变量的数字特征 -> 4.4 大数定理与中心极限定理 -> 内容要点 -> 棣莫佛—拉普拉斯中心极限定理
棣莫佛—拉普拉斯中心极限定理

  定理4(棣莫佛—拉普拉斯定理) 设随机变量服从参数为的二项分布,则对任意,有

.

  证明 因为 所以

 

根据定理即得

.

  注:棣莫佛—拉普拉斯定理是林德伯格—勒维定理的一个重要特例,它是历史上最早的中心极限定理.

发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号