高等数学(简明版-理工类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
第 六 章
第 七 章
第 八 章
第 九 章
第 十 章
第十一章
第十二章
向量的加减法
向量与数的乘法
两向量平行的充要条件
数轴上的向量及其表示
空间两点之间的距离
向量的坐标
向量的代数运算
向量的模与方向余弦
向量在轴上的投影
数量积的定义
数量积的运算
向量积的定义
向量积的性质
向量积的运算律
向量积的计算
向量的混合积
混合积的几何意义
空间曲面研究的两个基本问题
旋转曲面
柱面
空间曲线的一般方程
空间曲线的参数方程
空间曲线在坐标面上的投影
平面的点法式方程
平面的一般方程
平面的截距式方程
两平面的夹角
点到平面的距离
空间直线的一般方程
空间直线的对称式方程
直线的参数方程
直线的两点式方程
三点共线的充要条件
两直线的夹角
直线与平面的夹角
平面束
椭球面
抛物面
 
大学普通本科 -> 简明版-理工类 -> 高等数学 -> 第八章 空间解析几何与向量代数 -> 8.1 向量及其线性运算 -> 内容要点 -> 两向量平行的充要条件
两向量平行的充要条件

定理1  设向量,那么向量平行于的充分必要条件是:存在唯一的实数,使.

  充分性  显然;

必要性  设,取,当同向时取正值,当反向时取负值,即有.

此时同向,且.

的唯一性  设,又设,两式相减,得

,  即

,故,即.

表示与非零向量同方向的单位向量,按照向量与数的乘积的规定,

.

注:上式表明一个非零向量除以它的模的结果是一个与原向量同方向的单位向量,这一过程又称为将向量单位化.

发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号