高等数学(简明版-理工类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
第 六 章
第 七 章
第 八 章
第 九 章
第 十 章
第十一章
第十二章
导数的定义
左、右导数的定义
导数的几何意义
可导与连续关系
导数的四则运算法则
经济学中的导数
反函数的求导
复合函数的求导法则
双曲函数和反双曲函数求导
高阶导数定义
计算高阶导数方法
高阶导数运算法则
常用初等函数的高阶导数公式
隐函数求导
对数求导法
参数方程形式函数求导
变化率相关
微分的定义
可微的条件
基本微分公式
微分四则运算法则
复合函数微分
函数的线性化
相对误差
 
大学普通本科 -> 简明版-理工类 -> 高等数学 -> 第二章 导数与微分 -> 2.5 函数的微分 -> 内容要点 -> 可微的条件
可微的条件

定理  函数在点可微的充要条件是函数在点处可导,且.

  必要性  在点可微,

       .

即函数在点可导,且.

充分性  在点可导,

即函数在点可微,且.

由关系式:              

函数的微分可记为:
                           .

若令                     

即,自变量的微分等于自变量的改变量.

从而                     

即,函数的微分与自变量的微分之商等于该函数的导数. 因此,导数也称为“微商”.

发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号