引言
积分学要解决两个问题:第一个问题是原函数的求法问题,我们在第4章中已经对它做了讨论;第二个问题就是定积分的计算问题. 如果我们要按定积分的定义来计算定积分,那将是十分因难的. 因此,寻求一种计算定积分的有效方法便成为积分学发展的关键. 我们知道,不定积分作为原函数的概念与定积分作为积分和极限的概念是完全不相干的两个概念. 但是,牛顿和莱布尼茨不仅发现而且找到了这两个概念之间存在着的深刻的内在联系,即所谓的“微积分基本定理”,并由此巧妙地开辟了求定积分的新途径——牛顿-莱布尼茨公式. 从而使积分学与微分学一起构成变量数学的基础学科——微积分学. 牛顿和莱布尼茨也因此作为微积分学的奠基人而载入史册.
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号