线性代数(经管类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
矩阵的概念
两矩阵相等
矩阵的加减法运算
矩阵的数乘
矩阵的乘法
可交换矩阵
矩阵乘法的运算规律
线性方程组的矩阵表示
线性变换
矩阵的转置
转置矩阵的运算性质
方阵的幂及其性质
方阵的行列式及其性质
对称矩阵
反对称矩阵
逆矩阵的定义
伴随矩阵的定义
伴随矩阵的性质
可逆的条件与伴随矩阵法
可逆矩阵的推论
逆矩阵的运算性质
矩阵方程
矩阵多项式
分块矩阵的加法运算
分块矩阵的乘法运算
分块矩阵的数乘运算
分块矩阵的转置
分块对角矩阵
分块对角矩阵的性质
初等变换
行阶梯形矩阵
行最简形矩阵
标准形矩阵
初等矩阵
初等矩阵的性质
初等变换与初等矩阵的关系
求逆矩阵的初等变换法
可逆矩阵与初等矩阵的关系
用初等变换法求解矩阵方程
矩阵的k阶子式
矩阵的秩
矩阵秩的基本性质
用初等行变换求矩阵的秩
矩阵的秩与初等变换的关系
矩阵秩的常用性质
 
大学普通本科 -> 经管类 -> 线性代数 -> 第二章 矩阵 -> 2.3 逆矩阵 -> 内容要点 -> *矩阵多项式及其运算
*矩阵多项式及其运算

    设有多项式,阶矩阵,记
                          ,

为矩阵次多项式.

    因为矩阵都是可交换的,所以矩阵的两个多项式总是可交换的,即总有

                             

的多项式可以像数的多项式一样相乘或分解因式.

    例如,                   

                           .

    常用内容要点矩阵方程的例3中计算的方法来计算的多项式,即:

    (1)若,则,从而

                 

    (2)若为对角阵,则

                       

从而    

             

             .

发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号