概率论与数理统计(经管类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
第 六 章
第 七 章
第 八 章
随机试验
样本空间
基本事件的定义
事件的关系
完备事件组定义
事件的运算规律
确定性现象和随机现象
频率的稳定性
概率的统计定义
概率的公理化定义
概率的性质—有限可加性
概率的性质-逆事件的概率
概率的性质-事件差的概率
概率的性质-空集的概率
概率的性质-不大于1性
概率的性质—两事件加法公式
概率的性质—三事件加法公式
古典概率的定义
古典概型具有的特征
加法原理
乘法原理
不重复排列公式
重复排列公式
组合公式
捆绑法
线段上的几何概率
平面上的几何概型
条件概率的定义
乘法公式
多个事件的乘法公式
全概率公式
贝叶斯公式
两事件的独立性
多个事件的独立性
伯努利试验
伯努利定理
伯努利试验中事件首次发生的概率
 
大学普通本科 -> 经管类 -> 概率论与数理统计 -> 第一章 随机事件及其概率 -> 1.5 事件的独立性 -> 内容要点 -> 引例
引例

将一颗均匀骰子连掷两次,设

                ,        ,

显然,事件发生,并不影响事件发生的概率,这时我们称事件独立于,在数学上,可表述为:

                           其中             (1)

同样,如果                  其中             (2)

称事件独立于. 由乘法公式易见,(1)式和(2)式均等价于

                                                 (3)

故通常称事件相互独立. 注意到(3)式当

                            

时恒成立,故它不受的制约.

从而可采用刻画事件独立性.

发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号