- tina-wang
- [普通会员]
- 来自:广东
- 博客 | 相册 | 短消息
发表于 2010/8/4 16:54:23
楼主
标题:课外阅读------=麦克劳林简介
科林 麦克劳林(Colin Maclaurin) 是苏格兰数学家,1698年2月生于苏格兰的基尔莫登,1746年1月14日卒于爱丁堡。麦克劳林是18世纪英国最具有影响的数学家之一。
麦克劳林是一位牧师的儿子,半岁丧父,9岁丧母。由其叔父抚养成人。叔父也是一位牧师。麦克劳林是一个“神童”,为了当牧师,他11岁考入格拉斯哥大学学习神学,但入校不久却对数学发生了浓厚的兴趣,一年后转攻数学。17岁取得了硕士学位并为自己关于重力作功的论文作了精彩的公开答辩;19岁担任阿伯丁大学的数学教授并主持该校马里歇尔学院数学第工作;两年后被选为英国皇家学会会员;1722-1726年在巴黎从事研究工作,并在1724年因写了物体碰撞的杰出论文而荣获法国科学院资金,回车后任爱丁堡大学教授。
1719年,麦克劳林在访问伦敦时见到了牛顿,从此便成为牛顿的门生。1724年,由于牛顿的大力推荐,他继续获得教授席位。麦克劳林21岁时发表了第一本重要著作《构造几何》,在这本书中描述了作圆锥曲线的一些新的巧妙方法,精辟地讨论了圆锥曲线及高次平面曲线的种种性质。1742年撰写的《流数论》以泰勒级数作为基本工具,是对牛顿的流数法作出符合逻辑的、系统解释的第一本书。此书之意是为牛顿流数法提供一个几何框架的,以答复贝克来大主教等人对牛顿的微积分学原理的攻击。他以熟练的几何方法和穷竭法论证了流数学说,还把级数作为求积分的方法,并独立于Cauchy以几何形式给出了无穷级数收敛的积分判别法。他得到数学分析中著名的Maclaurin级数展开式,并用待定系数法给予证明。
他在代数学中的主要贡献是在《代数论》(1748,遗著)中,创立了用行列式的方法求解多个未知数联立线性方程组。但书中记叙法不太好,后来由另一位数学家Cramer又重新发现了这个法则,所以现在称为Cramer法则。
麦克劳林也是一位实验科学家,设计了很多精巧的机械装置。他不但学术成就斐然,而且关心政治,1745年参加了爱丁堡保卫战。
麦克劳林终生不忘牛顿对他的栽培,并为继承、捍卫、发展牛顿的学说而奋斗。他曾打算写一本《关于伊萨克.牛顿爵士的发现说明》,但未能完成便去世了。死后在他的墓碑上刻有“曾蒙牛顿推荐”,以表达他对牛顿的感激之情。
[编辑本段]生平
麦克劳林是一位牧师的儿子,半岁丧父,9岁丧母。由其叔父抚养成人。叔父也是一位牧师。麦克劳林是一个“神童”,为了当牧师,他11岁考入格拉斯哥大学学习神学,但入校不久却对数学发生了浓厚的兴趣,一年后转攻数学。17岁取得了硕士学位并为自己关于重力作功的论文作了精彩的公开答辩;19岁担任阿伯丁大学的数学教授并主持该校马里歇尔学院数学第工作;两年后被选为英国皇家学会会员;1722-1726年在巴黎从事研究工作,并在1724年因写了物体碰撞的杰出论文而荣获法国科学院资金,回车后任爱丁堡大学教授。
1719年,麦克劳林在访问伦敦时见到了牛顿,从此便成为牛顿的门生。1724年,由于牛顿的大力推荐,他继续获得教授席位。麦克劳林21岁时发表了第一本重要著作《构造几何》,在这本书中描述了作圆锥曲线的一些新的巧妙方法,精辟地讨论了圆锥曲线及高次平面曲线的种种性质。1742年撰写的《流数论》以泰勒级数作为基本工具,是对牛顿的流数法作出符合逻辑的、系统解释的第一本书。此书之意是为牛顿流数法提供一个几何框架的,以答复贝克来大主教等人对牛顿的微积分学原理的攻击。他以熟练的几何方法和穷竭法论证了流数学说,还把级数作为求积分的方法,并独立于Cauchy以几何形式给出了无穷级数收敛的积分判别法。他得到数学分析中著名的Maclaurin级数展开式,并用待定系数法给予证明。
他在代数学中的主要贡献是在《代数论》(1748,遗著)中,创立了用行列式的方法求解多个未知数联立线性方程组。但书中记叙法不太好,后来由另一位数学家Cramer又重新发现了这个法则,所以现在称为Cramer法则。
[编辑本段]其他
麦克劳林也是一位实验科学家,设计了很多精巧的机械装置。他不但学术成就斐然,而且关心政治,1745年参加了爱丁堡保卫战。
麦克劳林终生不忘牛顿对他的栽培,并为继承、捍卫、发展牛顿的学说而奋斗。他曾打算写一本《关于伊萨克.牛顿爵士的发现说明》,但未能完成便去世了。死后在他的墓碑上刻有“曾蒙牛顿推荐”,以表达他对牛顿的感激之情。广告或者签名替代文字