- tina-wang
- [普通会员]
- 来自:广东
- 博客 | 相册 | 短消息
发表于 2010/7/26 15:07:20
楼主
标题:著名数学家谈数学学习方法
名数学家谈数学学习方法
苏步青说:“学习数学要多做习题,边做边思索。先知其然,然后知其所以然”
陈省身说:“早晨醒来,想的第一件事就是数学。我的生活就是数学;终生不倦地追求就是数学,数十年如一日,从没有懈怠过,现在依然如此。”又说“用功不是指每天在房里看书,也不是光做习题,而是要经常想数学。一天至少有七、八个小时在思考数学。”
哈尔莫斯说:“数学的创作绝不是单靠推论可以得到的,首先通常是一些模糊的猜测,揣摩着可能的推广,接着下了不十分有把握的结论。然后整理想法,直到看出事实的端倪,往往还要费好大的劲儿,才能将一切付诸逻辑式的证明。这过程并不是一蹴可几的,要经过许多失败、挫折,一再地猜测、揣摹,在试探中白花掉几个月的时间是常有的。”
希尔伯特说:“当我听别人讲解某些数学问题时,常觉得很难理解,甚至不可能理解。这时便想,是否可以将问题化简些呢﹖往往,在终于弄清楚之后,实际上,它只是一个更简单的问题。”
祖冲之(公元429-500年)的学习方法是:“搜炼古今”.搜指搜索,博采众长,广泛地学习研究;炼是提炼,把各种主张拿来研究,经过自己的消化,提炼.它就是用这样的方法进行学习和研究,最后创立了自己的学说(圆周率:密率:π=355/113 约率:π=22/7 3.1415956<π<3.1415927).
日本数学家小平邦彦认为,在数学学习中没有捷径可走,其一是熟记多练(熟背公式,多做笔记和反复练习);其二是培养对数学的感觉和理解。这两点其实是手段和目的的关系。反复练习正是为了达到悟的结果及培养对数学的理解和感觉。用中国的一句成语来说就是熟能生巧。他认为数学的学习就是先认可已规定的公理、定义、法则等,然后反复证明练习,在不知不觉中达到对其的理解。譬如他提到对分数的除法三分之二除以五分之四,为什么要用五分之四去除时可以将分子与分母交换而去乘四分之五呢?就需要说明它的理由。
苏步青说:“学习数学要多做习题,边做边思索。先知其然,然后知其所以然”
陈省身说:“早晨醒来,想的第一件事就是数学。我的生活就是数学;终生不倦地追求就是数学,数十年如一日,从没有懈怠过,现在依然如此。”又说“用功不是指每天在房里看书,也不是光做习题,而是要经常想数学。一天至少有七、八个小时在思考数学。”
哈尔莫斯说:“数学的创作绝不是单靠推论可以得到的,首先通常是一些模糊的猜测,揣摩着可能的推广,接着下了不十分有把握的结论。然后整理想法,直到看出事实的端倪,往往还要费好大的劲儿,才能将一切付诸逻辑式的证明。这过程并不是一蹴可几的,要经过许多失败、挫折,一再地猜测、揣摹,在试探中白花掉几个月的时间是常有的。”
希尔伯特说:“当我听别人讲解某些数学问题时,常觉得很难理解,甚至不可能理解。这时便想,是否可以将问题化简些呢﹖往往,在终于弄清楚之后,实际上,它只是一个更简单的问题。”
祖冲之(公元429-500年)的学习方法是:“搜炼古今”.搜指搜索,博采众长,广泛地学习研究;炼是提炼,把各种主张拿来研究,经过自己的消化,提炼.它就是用这样的方法进行学习和研究,最后创立了自己的学说(圆周率:密率:π=355/113 约率:π=22/7 3.1415956<π<3.1415927).
日本数学家小平邦彦认为,在数学学习中没有捷径可走,其一是熟记多练(熟背公式,多做笔记和反复练习);其二是培养对数学的感觉和理解。这两点其实是手段和目的的关系。反复练习正是为了达到悟的结果及培养对数学的理解和感觉。用中国的一句成语来说就是熟能生巧。他认为数学的学习就是先认可已规定的公理、定义、法则等,然后反复证明练习,在不知不觉中达到对其的理解。譬如他提到对分数的除法三分之二除以五分之四,为什么要用五分之四去除时可以将分子与分母交换而去乘四分之五呢?就需要说明它的理由。
广告或者签名替代文字