学辅论坛 > 大学普通本科 理工类 概率论与数理统计 第七章 假设检验 7.5 分布拟合检验 >正文
1
1
>
  • ouxinghuan  
  • [普通会员]
  • 来自:广西
  • 博客 | 相册 | 短消息
发表于 2010/7/21 9:38:02
楼主
标题:非参数统计的一点介绍

非参数统计数理统计学的一个分支。如果在一个统计问题中,其总体分布不能用有限个实参数来刻画,只能对它作一些诸如分布连续、有密度、具有某阶矩等一般性的假定,则称之为非参数统计问题。

统计方法

  重要的非参数统计方法 秩方法是基于秩统计量(见统计量)的一类重要的非参数统计方法。设有样本X1,X2,…,Xn,把它们由小到大排列,若Xi在这个次序中占第Ri个位置(最小的占第1个位置), 则称Xi的秩为Ri(i=1,2,…,n)。1945年F.威尔科克森提出的"两样本秩和检验"是一个有代表性的例子。设X1,X2,…,Xm和Y1,Y2,…,Yn分别是从分布为 F(x)和 F(x-θ)的总体中抽出的样本,F连续但未知,θ也未知,检验假设 H:θ=0,备择假设为θ>0(见假设检验)。记Yi在混合样本(X1,X2,…,Xm,Y1,Y2,…,Yn)中的秩为Ri,且为诸秩的和,当W >C时,否定假设H,这里C决定于检验的水平。这是一个性能良好的检验。秩方法的一个早期结果是C.斯皮尔曼于1904年提出的秩相关系数。设(X1,Y1),(X2,Y2),…,(Xn,Yn)是从二维总体(X,Y)中抽出的样本,Ri为Xi在(X1,X2,…,Xn)中的秩,Qi为Yi在(Y1,Y2,…,Yn)中的秩,定义秩相关系数为(Ri,Qi)(i=1,2,…n)的通常的相关系数(见相关分析)。它可以作为X、Y之间相关程度的度量,也可用于检验关于X、Y独立性的假设。

  次序统计量和U 统计量在非参数统计中也有重要应用。前者可用于估计总体分布的分位数(见概率分布)、检验两总体有相同的分布及构造连续总体分布的容忍限和容忍区间(见区间估计)等。后者主要用于构造总体分布的数字特征的一致最小方差无偏估计(见点估计)及基于这种估计的假设检验。

  苏联数学家Α.Η.柯尔莫哥洛夫和Β.И.斯米尔诺夫在20世纪30年代的工作开辟了非参数统计的一个方面,他们的方法基于样本X1,X2,…,Xn的经验分布函数Fn(x)(见样本)。柯尔莫哥洛夫考察 Fn(x)与理论分布F(x)的最大偏差墹n,当墹n超过一定限度时,否定这个理论分布F(x)。这就是柯尔莫哥洛夫检验。斯米尔诺夫则考察由两个分布为F(x)和g(x)的总体中抽出的样本X1,X2,…,Xm和Y1,Y2,…,Yn计算其经验分布Fm(x)和gn(x)的最大偏差墹mn,当墹mn超过一定限度时,否定“F与g相等”这个假设。这就是斯米尔诺夫检验。

在非参数性估计方面,有关于估计分布的对称中心、概率密度函数和回归函数等比较重要的成果。

广告或者签名替代文字
  • zhanghouquan  
  • [普通会员]
  • 来自:福建
  • 博客 | 相册 | 短消息
发表于 2010/7/21 10:39:46
1楼
呵呵,看来非参数统计挺有意思嘛,有机会好好学下!
广告或者签名替代文字
1
1
>
回复帖子
  • 禁用URL识别
  • 使用个人签名
  • 接收新回复邮件通知
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号