矩阵的现代概念在19世纪逐渐形成。这一概念由19世纪英国数学家凯利首先提出。1801年德国数学家高斯(F.Gauss,1777~1855)把一个线性变换的全部系数作为一个整体。1844年,德国数学家爱森斯坦(F.Eissenstein,1823~1852)讨论了“变换”(矩阵)及其乘积。1850年,英国数学家西尔维斯特(James Joseph Sylvester,18414-1897)首先使用矩阵一词。1858年,英国数学家凯莱(A.Gayley,1821~1895)发表《关于矩阵理论的研究报告》。他首先将矩阵作为一个独立的数学对象加以研究,并在这个主题上首先发表了一系列文章,因而被认为是矩阵论的创立者,他给出了现在通用的一系列定义,如两矩阵相等、零矩阵、单位矩阵、两矩阵的和、一个数与一个矩阵的数量积、两个矩阵的积、矩阵的逆、转置矩阵等。并且凯莱还注意到矩阵的乘法是可结合的,但一般不可交换,且矩阵只能用矩阵去右乘。1854年,法国数学家埃米尔特(C.Hermite,1822~1901)使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由德国数学家费罗贝尼乌斯(F.G.Frohenius,1849~1917)发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。