隐函数微分法
一.方程隐含函数的情形
函数在点的某一邻域内具有连续的偏导数,且,,则方程在点的某一邻域内恒能唯一确定一个连续且具有连续导数的函数,它满足,并有
.(隐函数的求导公式)
二.方程隐含函数的情形
设函数在点的某一邻域内有连续的偏导数,且 , ,
则方程在点的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数,它满足条件,并有
, .
三.方程组(1)隐含,的情形
设,在点的某一邻域内有对各个变量的连续偏导数,又 ,,
且偏导数所组成的函数行列式
(雅克比行列式),
则方程组(1)在点的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数,,它们满足条件,,并有
, , , .
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号