高等数学(理工类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
第 六 章
第 七 章
第 八 章
第 九 章
第 十 章
第十一章
第十二章
罗尔(Rolle)定理
拉格朗日(Lagrange)中值定理
柯西(Cauchy)中值定理
费马引理
洛必达法则
Taylor中值定理
Macluarin公式
特殊函数的Maclaurin公式(一)
特殊函数的Maclaurin公式(二)
特殊函数的Maclaurin公式(三)
特殊函数的Maclaurin公式(四)
特殊函数的Maclaurin公式(五)
特殊函数的Maclaurin公式(六)
函数的单调性判别定理
函数单调性的应用
曲线的凹凸性定义
曲线的凹凸性与拐点的判别法
函数极值的定义
函数极值存在的必要条件
判断函数极值的第一充分条件
函数极值的求解步骤
判断函数极值的第二充分条件
函数最值的求解步骤
曲线渐近线的定义
铅直渐近线的定义
水平渐近线的定义
斜渐近线的定义
斜渐近线的求法
利用导数作图的一般步骤
弧微分的定义
曲率的定义
一般函数曲率计算公式
参数方程曲率计算公式
曲率圆的定义
根的二分求法
根的切线求法
 
大学普通本科 -> 理工类 -> 高等数学 -> 第三章 中值定理与导数的应用 -> 3.3 泰勒公式 -> 内容要点 -> 引言
引言

对比较复杂的函数,为便于研究,往往希望用一些简单的函数来近似表达.多项式函数是最为简单的一类函数,因而多项式经常被用于近似地表达函数,这种近似表达在数学上常称为逼近.英国数学家泰勒在这方面作出了不朽的贡献.其研究结果表明:具有直到阶导数的函数在一个点的邻域内的值可以用函数在该点的函数值及各阶导数值组成的次多项式近似表达.

例如,在微分学中已知,当很小时,有下列近似等式:

等等.

但这些近似等式存在明显不足,首先是精度不高,其次是误差无法估计.

问题  对给定的满足一定条件的复杂函数,是否存在一个次多项式函数,使得

且误差可估计.

发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号