线性代数(简明版-经管类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
矩阵的概念
两矩阵相等
矩阵的加法运算
矩阵的数乘
矩阵的减法
矩阵的乘法
可交换矩阵
矩阵乘法的运算规律
线性方程组的矩阵表示
线性变换
矩阵的转置
转置矩阵的运算性质
方阵的幂及其性质
方阵的行列式及其性质
对称矩阵
反对称矩阵
逆矩阵的定义
伴随矩阵的定义
伴随矩阵的性质
矩阵可逆的条件及伴随矩阵法
可逆矩阵的推论
逆矩阵的运算性质
矩阵方程
分块矩阵的加法运算
分块矩阵的乘法运算
分块矩阵的数乘运算
分块矩阵的转置
分块对角矩阵
分块对角矩阵的性质
初等变换
行阶梯形矩阵
行最简形矩阵
标准形矩阵
初等矩阵
初等矩阵的性质
初等变换与初等矩阵的关系
求逆矩阵的初等变换法
可逆矩阵与初等矩阵的关系
用初等变换法求解矩阵方程
矩阵的k阶子式
矩阵的秩
矩阵秩的基本性质
用初等行变换求矩阵的秩
矩阵的秩与初等变换的关系
 
大学普通本科 -> 简明版-经管类 -> 线性代数 -> 第二章 矩阵 -> 2.1 矩阵的概念 -> 内容要点 -> 引言
引言

    矩阵实质上就是一张长方形数表. 无论是在日常生活中还是在科学研究中,矩阵都是一种十分常见的数学现象,诸如学校里的课表、成绩统计表;工厂里的生产进度表、销售统计表;车站里的时刻表、价目表;股市中的证券价目表;科研领域中的数据分析表等,它是表述或处理大量的生活、生产与科研问题的有力工具.矩阵的重要作用首先在于它不仅能把头绪纷繁的事物按一定的规则清晰地展现出来,使我们不至于被一些表面看起来杂乱无章的关系弄得晕头转向;其次在于它能恰当地刻画事物之间的内在联系,并通过矩阵的运算或变换来揭示事物之间的内在联系;最后在于它还是我们求解数学问题的一种特殊“数形结合”的途径.

    在本课程中,矩阵是研究线性变换、向量的线性相关性及线性方程组的解法等的有力且不可替代的工具,在线性代数中具有重要地位.

发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号