微积分(经管类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
第 八 章
第 六 章
第 七 章
常数项级数的概念
Koch雪花
收敛级数的基本性质
正项级数
比较判别法
比较判别法的极限的形式
比值判别法
根值判别法
交错级数
绝对收敛与条件收敛
函数项级数的一般概念
幂级数的概念
幂级数的收敛域
收敛半径的求法
求收敛域的基本步骤
幂级数的代数运算
幂级数的分析运算性质
泰勒级数的概念
迈克劳林级数
函数展开成幂级数——直接法
常用麦克劳林展开式
函数展开成幂级数——间接法
函数值的近似计算
计算定积分
求常数项级数的和
 
大学普通本科 -> 经管类 -> 微积分 -> 第七章 无穷级数 -> 7.5 函数展开成幂级数 -> 内容要点 -> *函数的幂级数展开式的应用——计算定积分
*函数的幂级数展开式的应用——计算定积分

    许多函数,如等,其原函数不能用初等函数表示,但若被积函数在积分区间上能展开成幂级数,则可通过对幂级数展开式的逐项积分,用积分后的级数近似计算定积分.

求解方法:

                  被积函数            定积分近似值

                     ↓          ↑

                 展开成幂级数     →    逐项积分

发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号