高等数学(简明版-理工类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
第 六 章
第 七 章
第 八 章
第 九 章
第 十 章
第十一章
第十二章
邻域
聚点和孤立点
多元函数的概念
二元函数的极限
二元函数的连续性
二元初等函数
闭区域上连续函数的性质
偏导数定义
高阶偏导数
偏导数的几何意义
混合偏导数相等的条件
全微分的定义
可微的必要条件
可微的充分条件
二元函数的线性化近似问题
多元函数连续、可导、可微的关系
全微分在近似计算中的作用
绝对误差与相对误差
复合函数的中间变量为一元函数的情形
复合函数的中间变量为多元函数的情形
复合函数的中间变量既有一元函数也有多元函数的情形
全微分形式不变性
一元隐函数的求导公式
二元隐函数的求导公式
方程组确定的隐函数求导公式
空间曲线的切线与法平面
空间曲线的切线与法平面(续)
空间曲面的切平面与法线
空间曲面的切平面与法线(续)
曲面的法向量的方向余弦
方向导数的概念
梯度的概念
梯度的运算性质
二元函数的极值
极值的必要条件
极值的充分条件
二元函数极值的一般步骤
求最值的一般步骤
条件极值的概念
拉格朗日乘数法
最小二乘法
 
大学普通本科 -> 简明版-理工类 -> 高等数学 -> 第九章 多元函数微分学 -> 9.8 多元函数的极值 -> 内容要点 -> 极值的充分条件
极值的充分条件

    根据定理1,具有偏导数的函数的极值点必定是驻点. 但是函数的驻点不一定是极值点.  例如,点是函数的驻点,但函数在该点并无极值.

    如何判定一个驻点是否是极值点?下面的定理部分地回答了这个问题.

定理2(充分条件)设函数在点的某邻域内有直到二阶的连续偏导数,又

,  .

,  ,  .

(1) 当时,函数处有极值,且当时有极小值;当时有极大值

(2) 当时,函数处没有极值;

(3) 当时,函数处可能有极值,也可能没有极值.

这个定理的证明参见本章第九节.

注:在定理2中,如果,则不能确定是否是极值,需另作讨论.

发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号