高等数学(简明版-理工类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
第 六 章
第 七 章
第 八 章
第 九 章
第 十 章
第十一章
第十二章
邻域
聚点和孤立点
多元函数的概念
二元函数的极限
二元函数的连续性
二元初等函数
闭区域上连续函数的性质
偏导数定义
高阶偏导数
偏导数的几何意义
混合偏导数相等的条件
全微分的定义
可微的必要条件
可微的充分条件
二元函数的线性化近似问题
多元函数连续、可导、可微的关系
全微分在近似计算中的作用
绝对误差与相对误差
复合函数的中间变量为一元函数的情形
复合函数的中间变量为多元函数的情形
复合函数的中间变量既有一元函数也有多元函数的情形
全微分形式不变性
一元隐函数的求导公式
二元隐函数的求导公式
方程组确定的隐函数求导公式
空间曲线的切线与法平面
空间曲线的切线与法平面(续)
空间曲面的切平面与法线
空间曲面的切平面与法线(续)
曲面的法向量的方向余弦
方向导数的概念
梯度的概念
梯度的运算性质
二元函数的极值
极值的必要条件
极值的充分条件
二元函数极值的一般步骤
求最值的一般步骤
条件极值的概念
拉格朗日乘数法
最小二乘法
 
大学普通本科 -> 简明版-理工类 -> 高等数学 -> 第九章 多元函数微分学 -> 9.8 多元函数的极值 -> 内容要点 -> 极值的必要条件
极值的必要条件

    若二元函数在点处取得极值,那么固定,一元函数点必取得相同的极值;同理,固定点也取得相同的极值.

    因此,由一元函数极值的必要条件,我们可以得到二元函数极值的必要条件.

定理1(必要条件)设函数在点具有偏导数,且在点处有极值,则它在该点的偏导数必然为零. 即

,  .

类似地,如果三元函数在点具有偏导数,则它在有极值的必要条件为

,  ,  .

与一元函数的情形类似,对于多元函数,凡是能使一阶偏导数同时为零的点称为函数的驻点.

发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号