高等数学(简明版-理工类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
第 六 章
第 七 章
第 八 章
第 九 章
第 十 章
第十一章
第十二章
微分方程的定义
微分方程的解
可分离变量法
齐次方程的概念
可化为齐次方程的微分方程求法
求解一阶线性微分方程
伯努利方程的解法
y的二阶导等于一个关于x的函数
y的二阶导等于一个关于x和y的一阶导的函数
y的二阶导等于一个关于y和y的一阶导的函数
二阶微分方程的解
求二阶微分方程的通解
二阶非齐次微分方程的通解
二阶线性微分方程的特解
带虚数的二阶线性微分方程的解
二阶常系数齐次线性方程的解法
n阶常系数齐次线性微分方程的解法
右端函数为x的一个M次多项式与指数函数的乘积
右端函数为x的一个M次多项式与指数函数、正弦(余弦)函数的乘积
欧拉方程的解法
常系数线性微分方程组的解法
串联电路问题
弹簧问题
全部
精华
投票
悬赏
活动
其它
求助
大学普通本科 -> 简明版-理工类 ->
高等数学
-> 第七章 微分方程 ->
7.5 二阶线性微分方程解的结构
-> 内容要点 -> 二阶线性微分方程解的定理5
二阶线性微分方程解的定理5
定理5
设
是方程
的解,其中
,
,
,
为实值函数,
为纯虚数. 则
与
分别是方程
与
的解.
证
由定理的假设,有
,
.
由于恒等式两边的实部与虚部分别相等,所以
,
,
从而证得结论. 例如,如果已知方程
的通解为
,则
,
分别是方程
,
的通解.
发表自己对本题的跟帖
用户
密码
注册
文明上网!点击评论!
匿名回答
数据提交中...
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号