概率论与数理统计(简明版-理工类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
第 六 章
第 七 章
第 八 章
随机试验
样本空间
基本事件的定义
事件的关系
完备事件组定义
事件的运算规律
确定性现象和随机现象
频率的稳定性
概率的统计定义
概率的公理化定义
概率的性质—有限可加性
概率的性质-逆事件的概率
概率的性质-事件差的概率
概率的性质-空集的概率
概率的性质-不大于1性
概率的性质—两事件加法公式
概率的性质—三事件加法公式
古典概率的定义
古典概型具有的特征
加法原理
乘法原理
不重复排列公式
全排列公式
组合公式
捆绑法
条件概率的定义
乘法公式
多个事件的乘法公式
全概率公式
贝叶斯公式
两事件的独立性
伯努利试验
伯努利定理
伯努利试验中事件首次发生的概率
 
大学普通本科 -> 简明版-理工类 -> 概率论与数理统计 -> 第一章 随机事件及其概率 -> 1.2 随机事件的概率 -> 内容要点 -> 概率的公理化定义
概率的公理化定义

    概率的频率解释为概率提供了经验基础, 但是不能作为一个严格的数学定义, 从概率论有关问题的研究算起, 经过近三个世纪的漫长探索历程, 人们才真正完整地解决了概率的严格数学定义. 1993年, 苏联著名的数学家柯尔莫哥洛夫, 在他的《概率论的基本概念》一书中给出了现在已被广泛接受的概率的公理化体系, 第一次将概率论建立在严密的逻辑基础上.

    定义  设是随机试验, 是它的样本空间, 对于的每一事件赋予一个实数, 记为满足下列三个条件:

    1. 非负性: 对每一个事件

    2. 完备性:

    3. 可列可加性: 对任意可数个两两互不相容的事件

                

则称为事件的概率.

发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号