微积分(经管类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
第 八 章
第 六 章
第 七 章
罗尔(Rolle)定理
拉格朗日(Lagrange)中值定理
拉格朗日中值推论
柯西(Cauchy)中值定理
费马引理
洛必达法则
Taylor中值定理
Macluarin公式
指数函数的Maclaurin公式
正弦函数的Maclaurin公式
余弦函数的Maclaurin公式
对数函数的Maclaurin公式
分式的Maclaurin公式
幂函数的Maclaurin公式(六)
函数的单调性判别定理
函数单调性的应用
曲线的凹凸性定义
曲线凹凸性的判断
函数的拐点
函数极值的定义
函数极值存在的必要条件
判断函数极值的第一充分条件
函数极值的求解步骤
判断函数极值的第二充分条件
函数最值的求解步骤
抛射体运动模型
平均成本函数
利润最大化
需求弹性分析总收益的变化
曲线渐近线的定义
铅直渐近线的定义
水平渐近线的定义
斜渐近线的定义
斜渐近线的求法
利用导数作图的一般步骤
根的二分求法
根的切线求法
 
大学普通本科 -> 经管类 -> 微积分 -> 第三章 中值定理与导数的应用 -> 3.5 数学建模——最优化 -> 内容要点 -> *对抛射体运动建模
*对抛射体运动建模

我们将要为理想抛射体运动建模.所谓理想抛射体是指抛射体在运动过程中不计空气阻力,仅受到唯一的作用力:总指向正下方的重力,其运动轨迹呈抛物线状.假设抛射体在时刻以初速度被发射到第一象限,若和水平线成角(即抛射角),则抛射体的运动轨迹由参数方程

给出,其中是重力加速度(9.8).  上面第一个方程描述抛射体在时刻的水平位置,而第二个方程描述了抛射体在时刻的竖直位置.

发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号