微积分(经管类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
第 八 章
第 六 章
第 七 章
导数的定义
左、右导数的定义
导数的几何意义
可导与连续关系
导数的四则运算法则
反函数的求导
复合函数的求导法则
高阶导数定义
计算高阶导数方法
高阶导数运算法则
常用初等函数的高阶导数公式
隐函数求导
对数求导法
参数方程形式函数求导
微分的定义
可微的条件
基本微分公式
微分四则运算法则
复合函数微分
函数的线性化
相对误差与绝对误差
误差限
误差的三种估计方式
变化率
边际函数值
边际成本、收入、利润
弹性
 
大学普通本科 -> 经管类 -> 微积分 -> 第二章 导数与微分 -> 2.1 导数概念 -> 内容要点 -> 引言
引言
    从15世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贾贸易得到大规模的发展,形成了一个新的经济时代. 而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展. 生产实践的发展对自然科学提出了新的课题,迫切要求力学、天文学等基础科学的发展,而这些学科都是深刻依赖于数学的,因而也推动了数学的发展. 在各类学科对数学提出的种种要求中,下列三类问题导致了微分学的产生:
(1)求变速运动的瞬时速度;
(2)求曲线上一点处的切线;
(3)求最大值和最小值.
    这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题. 牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念.
发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号