线性代数(经管类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
内积的定义
内积的运算性质
向量的长度
向量长度的性质
单位向量
向量间的夹角
向量的正交
正交向量组与规范正交向量组
正交向量组的性质
正交基
规范正交基
线性无关向量组的规范正交化
正交矩阵的定义
正交矩阵的性质
正交变换及其性质
正交矩阵的充要条件
特征值的求法
特征向量的求法
特征值与特征向量的定义
转置矩阵的特征值
特征值的和与积的性质
矩阵多项式的特征值
特征值与特征向量的性质定理
相似矩阵
相似矩阵的性质
相似矩阵的特征值与特征向量
矩阵与对角矩阵相似的充要条件
矩阵与对角矩阵相似的充分条件
矩阵可对角化的定义
矩阵可对角化的充要条件
矩阵对角化的步骤
利用矩阵对角化计算矩阵的高次幂
实对称矩阵特征值的性质
实对称矩阵互异特征值的特征向量
实对称矩阵的重根特征值与特征向量
实对称矩阵可对角化的性质
实对称矩阵对角化的步骤
 
大学普通本科 -> 经管类 -> 线性代数 -> 第四章 矩阵的特征值与特征向量 -> 4.5 离散动态系统模型 -> 内容要点 -> 区域人口迁移预测问题
区域人口迁移预测问题

    例2  使用第三章第七节中的人口迁移模型的数据,忽略其它因素对人口规模的影响,计算年的人口分布.

    解  迁移矩阵的全部特征值是,其对应的特征向量分别是

                      .

因为,故可对角化.

,有 ,则

                         .

年的初始人口为,故对年,有

           

              

              .

年的城市人口约为,农村人口为.

发表自己对本题的跟帖
用户   密码     注册
知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号