概率论与数理统计(经管类)
提示:选中知识点单击!
第 一 章
第 二 章
第 三 章
第 四 章
第 五 章
第 六 章
第 七 章
第 八 章
联合分布函数的定义
二维随机变量落入矩形域的概率
边缘分布函数的定义
联合分布函数的性质——规范性
联合分布函数的性质——单调性
联合分布函数的性质——右连续性
离散型随机变量联合概率分布定义
离散型随机变量联合概率分布性质
二维离散型随机变量落入一区域的概率
二维离散型随机变量分布函数的计算
二维离散型随机变量边缘概率分布
二维连续型随机变量的定义
联合概率密度函数的性质
二维连续型随机变量边缘函数
二维均匀分布定义
矩形域上的二维均匀分布的性质
二维正态分布的定义
二维正态分布的性质
条件分布函数的定义
随机变量相互独立的定义
随机变量相互独立的两个定理
二维离散型随机变量条件分布的定义
二维离散型随机变量相互独立的定义
二维连续型随机变量相互独立的定义
二维连续型随机变量条件密度函数的定义
离散型卷积公式
离散型随机变量函数的概率分布
连续型随机变量函数的概率密度
连续型随机变量函数的联合概率密度
连续型随机变量的卷积公式
连续型随机变量和的分布
独立正态分布的卷积公式
连续型随机变量商的分布
连续型随机变量积的分布
最大、最小分布
 
大学普通本科 -> 经管类 -> 概率论与数理统计 -> 第三章 多维随机变量及其分布 -> 3.1 二维随机变量及其分布 -> 内容要点 -> 二维连续型随机变量及其概率密度
二维连续型随机变量及其概率密度

  定义为二维随机变量,为其分布函数,若存在一个非负可积的二元函数 使得对任意实数 有

                          

则称为二维连续型随机变量,并称的概率密度(密度函数),或的联合概率密度(联合密度函数).

概率密度函数的性质:

  (1)     

  (2)

  (3)设平面上的区域,点落入内的概率为

                     

特别地,边缘分布函数

             

                              

上式表明,是连续型随机变量,且其密度函数为:

                  

同理,是连续型随机变量,且密度函数为:

                  

分别称关于边缘密度函数.

  (4)若在点连续,则有

                  

进一步,根据偏导数的定义,可推得:当,很小时,有

      

即,落在小区间上的概率近似等于.

发表自己对本题的跟帖
用户   密码     注册
知识点提示
1、连续型随机变量在一区间的概率
对任意实数

     
2、分布函数的计算—连续型
为连续型随机变量的概率密度函数,则对任意的实数,随机变量的分布函数为

     .

知识点查询
版权所有©佛山市数苑科技信息有限公司
数苑网 粤ICP备09146901号